CapX 2020

A Vision for Transmission Infrastructure Investments for Minnesota

What Is CapX 2020

CapX 2020 is a joint effort by Minnesota transmission utilities to look at future transmission needs in a global, coordinated way

How The System Works

Power is generated or purchased

Bulk transmission (>115kv) moves the power to transmission substations

These substations drop the voltage down

Load serving transmission (<115kv) moves the power to the distribution substation

Distribution substations drop the voltage down

Distribution lines move the power to business, industrial and residential customers 3

Open Access Transmission

FERC regulates access to the transmission grid

The World Has Changed

Before Open Access (60s, 70s)	After Open Access (Now)
Each utility was more of an island: Utilities owned and controlled transmission, primarily for themselves	Competitive wholesale markets with transmission as the vehicle
Utilities conducted integrated planning for generation and transmission – no separation issues	Utility transmission planners must plan for all generation projects in a non-discriminatory manner – limits on integrated planning
Coordination was through MAPP for some functions	MAPP is replaced by MISO and MRO

MISO and Open Access

- Functions
 - Grid access
 - Congestion management
 - Reliability
 - Planning
 - Market

Transmission Congestion

Months	1998	2002
Jan-Mar	30	205
Apr-Jun	95	365
Jul-Sep	125	605
Oct-Dec	35	345

Source: ICF Consulting – data from April 2003 report

Transmission reliability curtailments (Midwest Market)

Source: FERC presentation at Midwest Energy Infrastructure Conference, November 2002

Why We Came Together

- To facilitate expansion of the transmission grid
 - To relieve congestion
 - To provide market access
 - To maintain reliability into the future
- What is at stake
 - Reliable power
 - Access to renewable energy
 - Low-cost energy and economic vitality in the state
- To request policy changes to help make this happen

Our Interconnectedness

Study Load Area

Load Zones

Control Area	2009 Load Level (MW)	Yearly growth rate (%)	Calculated 2020 Load Level (MW)
Alliant Energy (W)	3265.3	1.60	3888.2
Xcel Energy (N)	9632.6	2.68	12885.1
MN Power	1507.3	1.70	1814.4
SMMPA/RPU	330.0	2.70	442.4
Great River Energy	2833.5	3.05	3894.0
Otter Tail Power	1677.2	2.70	2248.3
Dairyland Power Coop	954.7	2.60	1266.2
Total	20,200.6	Ave.=2.49	26487.8

What We Are Finding

Scenario	System Intact Overloads	Prior Outage Overloads	Voltage Violations
North/ West	42	142	45
MN	42	187	14
East	42	197	33

What We Were Able To Do

- Established a vision of transmission expansion needed over the next 15 years to serve the projected 4,500 to 6,300 MWs of increased customer demand
- Identified, through detailed studies, reliability issues
- Assessed and identified impediments to building needed infrastructure in a timely manner
- Informed and educated decision makers and stakeholders on the above
- NOW, we are able to gear up for a major grid expansion

Conceptual Transmission

What Minnesota Needed

- Timely, efficient and certain cost-recovery mechanism
 - Utilities cannot finance large capital expenses between rate cases
 - Utilities need to recover costs, CWIP and a higher ROE
 - PUC had the authority, but legislation made this clear
- Improved Certificate of Need criteria
 - Old standard was generation to load
 - Now, regional needs and reliability are equally important
- Focused siting and routing procedures
 - Process was bifurcated
 - Current process lead to delays, confusion and wasted time

At Stake: Reliability

- Our current transmission system is strong but reaching its limit, and it's at its limit more frequently as time goes on
- As the demand for electricity increases and the projected generation is built— including significant amounts of wind power the robustness of the grid will deteriorate

At Stake: Renewables

- Renewable Energy Objective: 2400
 MW of renewable generation
- No such thing as "green" transmission: Transmission is resource "neutral"

At Stake: Access

- Access to low-cost power serving future energy needs of the consumers of Minnesota
- Translates into the economic vitality of the state

Our Conclusions

- We needed to expand the grid to meet growing customer demand
- Future reliability, renewable energy and access to low-cost power were all at stake
- We had time to do this right if we started now
- The world has changed and we need to change with it to address this critical need
- Legislation in 2005 allowed all this to become a reality