CETF and No CapX 2020

PUC Dockets 12-1053 & 12-1337

ACSR and ACSS Conductor Specs and Rating

From Application, Appendix 7 SW MN 345 kV Split Rock – Lakefield Jct. PUC Docket E-002/CN-01-1958

-

Computation of Bare ACSR Overhead Conductor Ampacities

(Steady State)

Per ANSI/IEEE Standard 738-1986

			Temperature	
Wind speed Coefficient of emissivity Coefficient of solar absorption	ml/hr 1.36	fVs 2.00 0.5 0.5	Conductor carrier for the set	Latitude 45 degrees N Azimuth of line 90 degrees Elev above msi 1000 lt
Air viscosity @ T ave Air density Air thermal conductivity Attitude of sun Azimuth of sun Heat rec'd by a surface Elevation correction factor		0.04943 0.06192 0.00898 68.1 180 94.64 1.0340	ib/h ft ib/it ³ W/it C degrees degrees W/it ²	

Resistance, Ohm/ml					m/mi	Ohm/klt		Conducto	r heat trar	nsfer, W/f		a Bas da		MVA rating @ nominal voltage						a second	
	C	onduck	or	50	100	100	100	Forced	convection h	eat loss	Radiated	Solar	Ampacity kV:	69	115	138	161	230	345	500	kcm
ko		strand	diam,in	deg C	deg C	deg C	deg C	get	gc2	max	heat loss	heat gain	cond/ph:	1	1	1	1	1	2	3	
A	10	6/1	0.563	0.5920	0.6979	0.6979	0.13218	17.43	15.27	17.43	3.79	2.30	378	45	75	90	106				4/0
28		8/7	0.633	0.5520	0.6507	0.6507	0.12324	18.49	16.38	18,49	4.26	2.58	405	48	81	97	113				266
33		18/1	0.684	0.3059	0.3606	0.3608	0.06830	19.23	17.16	19.23	4.61	2.79	555	66	111	133	155				336
33		28/7	0.721	0.3072	0.3823	0.3623	0.06862	19.75	17.71	19.75	4.85	2.94	562	67	112	134	157				336
47		26/7	0.858	0.2169	0.2557	0.2557	0.04843	21.57	19.66	21.57	5.78	3.50	702	84	140	168	198				477
47		24/7	0.846	0.2168	0.2556	0.2556	0.04841	21.42	19.50	21.42	5,70	3.45	699	84	139	167	195				477
55		26/7	0.927	0,1860	0.2192	0.2192	0.04152	22.43	20.60	22.43	6.24	3.78	774	93	154	185	216				556
63		24/7	0.977	0.1631	0.1922	0.1922	0.03640	23.04	21.26	23.04	6,58	3.98	839	100	167	201	234	334			636
79		26/7	1.108	0.1306	0.1538	0.1538	0.02913	24.58	22.92	24.56	7.48	4.52	972	116	194	232	271	387	1161	2525	795
79		45/7	1.115	0.1313	0.1544	0.1544	0.02924	24.84	23.01	24.64	7.51	4.55	972	118	194	232	271	387	1161	2524	795
79		30/19	1.140	0.1307	0.1540	0.1540	0.02917	24.92	23.32	24.92	7.88	4.65	979	117	195	234	273	390	1170	2543	795
95		45/7	1.165	0.1099	0.1291	0.1291	0.02445	25.19	23.62	25.19	7.84	4.75	1076	129	214	257	300	429	1286	2795	954
95		54/7	1.196	0.1094	0.1287	0,1287	0.02438	25.53	24.00	25.53	8.05	4.88	1085	130	216	259	303	432	1297	2820	954
115	501	64/19	1.338	0.0863	0.1013	0.1013	0.01919	27.03	25,67	27.03	9.01	5.48	1263	151	252	302	352	503	1509	3281	1192
127	1991 - 199	54/19	1.382	0.0851	0.0996	0.0996	0.01888	27.48	26.17	27.48	9.31	5.63	1285	154	256	307	358	512	1536	3339	1272
159		54/19	1.545	0.0657	0.0767	0.0767	0.01453	29.09	27.98	29.09	10.40	6.30	1512	181	301	361	422	602	1807	3928	1590
23		76/19	1.802	0.0505	0.0584	0.0584	0.01108	31.47	30.69	31.47	12.13	7.35	1811	216	361	433	505	721	2164	4704	2312

Page 1

-

Notes: Sun computations based on noon local sun time Solar absorption based on "Clear atmosphere" Azimuth of line: N-S = 0, E-W = 90

Xcel Energy Delivery System Plenning & Engineering

1

Computation of SAC Overhead Conductor Ampacities

(Steady State)

Per ANSI/IEEE Standard 738-1986

				Tempe	erutar		
Wind speed	m/hr 1.36	ft/s - 2.00	Ambient air temp	C 40	F104	1 allocate	
Coellicient of emissivity	1.00	0.5	Conductor surface temp	200	392	Lalitude	45 degrees N
Coellicient of solar absorption		0.5	Conductor surface temp	200	385	Azimuth of line Elev above msl	90 degrees 1000 lt
Air viscosily @ T ave		0.05463	lb/h ll				
Air density		0.05403	1b//13				
Air thermal conductivity		0.0101	W/ILC			n	
Allitude of sun		68.1	degrees				
Azimuth of sun		180	degrees				
Heal rec'd by a surface		94.64	W/It ²				
Elevation correction factor		1.0340		-			

Resistance, Ohm/ml			m/ml	Ohm/kit Conductor heat transfer, W/It (MVA rating @ nominal voltage											
	Conduc	lor	50	100	200	200	Forced	convection he	al loss	Radiated	Solar	Ampacity #	V: -	69	115	138	161	230	345	500	kam
kcm	strand	diam,in	deg C	deg C	deg C	_deg C_	_qc1	qc2	max	heat loss	heat gain	Y /		1	1	1	1	1	2	3	kcm
4/0	6/1	0.563	0.5920	0.6979	0.9097	0.17229	48.46	39.77	46.46	15.72	2.30	590		70	117	141	164				4/0
266	6/7	0.633	0.5520	0.6507	0.8481	0.18063	49.28	42.67	49.28	17.67	2.58	633		78	128	151	177		- 1 m		266
336	18/1	0.684	0.3059	0.3608	0.4700	0.08902	51.24	44.70	51.24	19.09	2.79	871		104	174	208	243				336
336	26/7	0.721	0.3072	0.3623	0.4725	0.08949	52.62	48.14	52.82	20.13	2.94	883		106	178	211	248				
477	26/7	0.858	0.2169	0.2557	0.3333	0.08313	57.44	51.21	57.44	23.95	3.50	1111		133	221	266	,010				336
477	24/7	0.848	0.2168	0.2556	0.3332	0.08311	57.04	50.78	57.04	23.62	3.45	1108	•	132	220	284	308				477
556	26/7	0.927	0.1860	0.2192	0.2858	0.05409	59.73	53.65	59.73	25.88	3.78	1230		147	245	294	343				477
636	24/7	0.977	0.1631	0.1922	0.2504	0.04742	61.34	55.37	61.34	27.27	3.98	1338		160	266	319	373	532			556
795	28/7	1.108	0.1306	0.1538	0.2002	0.03792	65.38	59.71	65.38	30.93	4.52	1555		186	310	372	434	620	1860	4040	636
795	45/7	1.115	0.1313	0.1544	0.2006	0.03799	65.59	59.93	65.59	31.13	4.55	1558		186	310	372	434	620	1861	4042	795
795	30/19	1.140	0.1307	0.1540	0.2006	0.03799	66.33	60.74	66.33	31.82	4.65	1569		187	312	375	437	625	1875	4047	795
186 954	45/7	1.165	0.1099	0.1291	0.1875	0.03172	67.08	61.53	67.06	32.52	4.75	1729		207	344	413	482	689	TEN	4076	795
954	54/7	1.196	0.1094	0.1287	0.1673	0.03169	67.96	62.51	67.96	33.39	4.88	1745		209	348	417	487	695	2085	4492 4533	954
1192	54/19	1.338	0.0863	0.1013	0.1313	0.02487	71.95	66.86	71.95	37,35	5.48	2044		244	407	488	570	814	2442	5309	954 -
1272	54/19	1.382	0.0851	0.0998	0.1288	0.02438	73.14	68.17	73.14	38.58	5.63	2087		249	416	499	582	831	2494	5422	1272
1590	54/19	1.545	0.0857	0.0767	0.0987	0:01869	77.41	72.89	77.41	43.13	6.30	1472		295	492	591	689	985	2954	6423	1590
2312	76/19	1.802	0.0505	0.0584	0.0742	0.01405	83.72	79.94	83.72	50.30	7.35	3002		359	598	718	837	1198	3588	7800	2312

Notes: Sun computations based on noon local sun time Solar absorption based on "Clear atmosphere" Azimuth of line: N-S = 0, E-W = 90

Xcel Energy Delivery System Planning & Engineering M

Ex 35, Application, Appendix 7

.