
Legalectric, Inc.

Carol Overland Attorney at Law, MN #254617 Energy Consultant—Transmission, Power Plants, Nuclear Waste overland@legalectric.org

1110 West Avenue Red Wing, Minnesota 55066 612.227.8638 P.O. Box 69 Port Penn, Delaware 19731 302 834 3466

September 25, 2015

Chuck Thompson, Manager Siting & Regulatory Affairs Dairyland Power Cooperative 3200 East Avenue South La Crosse, WI 54602-0617 via email at cat@dairynet.com

Dennis Rankin Engineering and Environmental Analyst USDA RUS 1400 Independence SW, Mailstop 1571 Washington D.C., 20250-1571 via email at dennis.rankin@wdc.usda.gov

In Re: THIRD NO CAPX 2020 COMMENT AND REQUEST FOR EIS

Dairyland Power Cooperative Upgrade of Q-1D South, USDA RUS #1060

Dear Mr. Thompson and Mr. Rankin:

ON BEHALF OF NO CAPX 2020, I AGAIN REQUEST THAT A FULL EIS BE COMPLETED ON THIS PROJECT, AS WAS DONE FOR THE MARSHLAND-BRIGGS RD. PROJECT, AS THE REBUILD OF THE Q-1 LINE HAS BEEN SEGMENTED, AND THIS, THE SMALLEST OF THE SEGMENTS, HAS EXTREME IMPACTS, WHICH MAY EVADE ENVIRONMENTAL REVIEW IF SEGMENTED.

For the record, I have requested information regarding this project several times in order to have enough to go on to prepare a comment, and have yet to receive additional information describing this project and its impacts.

This Comment incorporates all prior comments and correspondence regarding this project as if fully related here.

Regarding the Q-1D South project, on behalf of No CapX 2020, I offer the following comments:

The USDA RUS should require an Enviuronmental Impact Statement for this project.

No CapX 2020 hereby requests a full Environmental Impact Statement for this project and for all the associated, segmented parts of the Dairyland Q-1 line and their cumulative impacts.

Specifications and capacity of project

At this time, I rely on the MISO presentations, provided in my second comment, for specifications of the line. Info regarding amps and MVA comes from the attached charts. It's my understanding that this project will significantly increase capacity of the lines and electric and magnetic fields will significantly increase as well. The specifics of this project have yet to be revealed, so let's see the info. This should be evaluated by the RUS.

Rights of way and easements

It is not clear that Dairyland has all the easements and rights of way necessary to build and operate this project. The "access roads" seem to traverse property that goes far beyond the boundaries of easements. This needs to be verified by RUS.

Justifications, need for the project, and rejections and approval by Wisconsin PSC

This full Q-1 line was considered as a justification for the Badger Coulee transmission line, with the claim that there were reliability issues that would be resolved if the Badger Coulee line were built. That problem solving transmission line has been permitted, so there is no reason to believe the Q-1 line needs to be rebuilt.

A rebuilt of the Q-1 line was also considered as an alternative to the Badger Coulee transmission line, and it was rejected and Badger Coulee built instead. Therefore, there is no reason to believe that the Q-1 line should be rebuilt as that was rejected.

Topics raised in "Public Notice" for project

The "notice" was supplemented via a recent email from Dairyland, which provided more information, but still only sketchy details.

AS NOTED PREVIOUSLY, ENVIRONMENTAL REVIEW MUST ADDRESS:

No Build Alternative and Analysis

The environmental review must consider the "No-Build Alternative" for compliance with NEPA.

Alternatives – System Alternatives and Route Alternatives

This bears repeating: The environmental review must consider alternatives. As to routing alternatives, I am not sufficiently familiar with the area to propose routing alternatives. Local residents should be offered opportunity to suggest alternatives for analysis by RUS.

The environmental review must consider alternatives. As to system alternatives, some possibilities include:

- Evaluate removal of the link between Briggs Road as duplicative and unnecessary. For example, because CapX 2020 comes down to Briggs Road, and Badger Coulee runs north from Briggs Road, it may be possible to eliminate the Q-1 161 kV connection completely.
- Evaluate connection of the Genoa northward section of Q-1 to the large new substation south of I-90 and east of La Crosse.
- Evaluate impacts of shut down of Alma coal, Genoa coal, and Cassville coal on need for the connection between these plants and La Crosse.
- Evaluate impact continued operation of the La Crosse 3 generator on need for Q-1. This was a deciding factor in approval of CapX 2020, which claimed the La Crosse generator was not operational, and it was correctly noted that an operational Unit 3 would bring available generation to an acceptable level. See PSC Final Order p. 22, Wisconsin PSC Docket 05-CE-136 (5/30/2012); Xcel Energy Integrated Resource Plan, MPUC Docket 12-1240. The Q-1line, and specifically Q-1D South, may not be needed.
- Environmental Review should evaluate whether this line is needed in light of purpose of Q-1 as transmission for generation to La Crosse, and of available generation in La Crosse and shuttered generation on both the north and southern ends of the line.

Segmentation prohibited under NEPA and CEQ regulations

The multiple Q-1 projects must not be segmented, and environmental review must address this segment, the other segments, and cumulative impacts.

The RUS must consider "connected actions" defined as actions that:

- (i) Automatically trigger other actions which may require environmental impact statements;
- (ii) Cannot or will not proceed unless other actions are taken previously or simultaneously;
- (iii) Are independent parts of a larger action and depend on the larger action for their justification. ¹

_

¹ See 40 C.F.R. §1508.25(a)(1)(1997).

No "independent utility" justification has been proffered to permit this segmentation.

Further, there has been no finding that this project will have no significant impact. It is my understanding that the RUS will make a determination as to the type and breadth of environmental review required for this project. RUS must take a "hard look" at the consequences of this project and RUS financing of this project that would make this project happen. This "hard look" requires a record, which at this time does not appear to exist. An Environmental Impact Statement is needed due to the substantial impacts, and environmental review must consider:

- Cumulative environmental impacts of all of the Q-1 upgrades, not just this one small segment.
- The cumulative environmental impacts for all Q-1 upgrades, whether financed by USDA RUS or otherwise, should be considered.
- Under NEPA, segmentation of projects is not appropriate, for example, in this case,
 Dairyland has separated out the project with the most extreme environmental impacts to
 close residents and directly affected landowners into a nine mile segment that may not
 receive the same environmental review that it would had it been included as part of the
 USDA RUS financed Marshland-Briggs Road segment.
- "Connected actions" include not just the other segments of the Q-1 transmission line, but also the RUS funding of various of those segments, including CapX 2020 and Badger Coulee, and the the Marshfield-Briggs Road segment of Dairyland's Q-1.

RUS authority, mission, and criteria for grant of loans

Environmental review, must begin with disclosure of project details, phased and connected actions, and potential for impacts. There must also be a cogent explanation of, and citations for the RUS authority to loan funds for rebuild of facilities such as the Dairyland Q-1 line, a demonstration that this project loan falls within the mission of the RUS, and specific itemization of criteria for the RUS determination of whether to provide funds for this project. Each of these areas should be accompanied by citations to authority.

Request for Information

Again, please forward information about this project at your earliest convenience, and post it online for the public to access. I will also post this information, if and when received, on my No CapX 2020 website.

On behalf of No CapX 2020, I have filed a FOIA request, but that is not likely to result in any information anytime soon.

Request for Full Environmental Impact Statement on this project, all segments of Q-1, and cumulative impacts

ON BEHALF OF NO CAPX 2020, I AGAIN REQUEST THAT A FULL EIS BE COMPLETED ON THIS PROJECT, AS WAS DONE FOR THE MARSHLAND-BRIGGS RD. PROJECT, AS THE REBUILD OF THE Q-1 LINE HAS BEEN SEGMENTED, AND THIS, THE SMALLEST OF THE SEGMENTS, HAS EXTREME IMPACTS, WHICH MAY EVADE ENVIRONMENTAL REVIEW IF SEGMENTED.

Thank you for the opportunity to Comment on this project and for your attention to these matters.

Very truly yours,

Carol A. Overland Attorney at Law

Enclosures: ACSR and ACSS Tables

andAdvuland

Computation of Bare ACSR Overhead Conductor Ampacities

(Steady State)

Per ANSI/IEEE Standard 738-1986

Wind speed Coefficient of emissivity Coefficient of solar absorption	mi/hv 1.36	2.00 0.5 0.5		E Latitude 12 Azimuth of line Bay above mai	90 degrees
Air viscosity © T ave Air density Air theresi conductivity Altitude of eurn Azireuth of eun Heat not'd by a surface Elevation connoction festor		0.04940 0.06192 0.00890 69.1 180 94.64 1.0340	Edit ii Edit ii Will C dayseas dayseas won ²		

				Deal	atenos. Ot	es/mi	Ohm/kit		Conducts	or heat tree	sler, Wil				M	VA reting	@ nom	inal volta	De .			
Conductor		THE CO. 120 100						Ferral convention heat less Reduced Salar					V: 69	115	136	161	230	345	500	kom		
	-			den C	deg C	deg C	deg C	get	cc2	max	heal loss	heat pay	condi	ptc 1	. 1	1	1	1	2	3		
	107	strand	danus	ung u	382.0	2004.5	019 0		-	-	-	-										
	4/0	9/1	0.583	0.5920	0.6979	0.8979	0.13018	17.43	15.27	17.43	2.79	2.00	278	4	5 76	90	108				4/0	
	266	6/7	0.633	0.5520	0.6507	0.6507	0.12224	18.49	16.38	18.49	4.26	2.58	406	4	8 81	97	113				266	
	336	180	0.684	0.0059	0.3606	0.3908	0.06630	19.23	17.16	19.23	4.01	2.79	555		8 111	133	155				338	
			0.721	0.2072	0.3623	0.3823	0.06662	19.75	17.71	19.75	4.85	2.94	662	- 4	7 112	134	157				335	
	936	26/7			0.2557	0.2557	0.04843	21.57	19.00	21.57	5.78	3,50	702	i		193	196				477	
	677	2617	0.858	0.2109			0.04841	21.42	19.50	21.42	5.70	3.45	609	- 1		167	195				477	
	677	24/7	0.846	0.2168	0.2556	0.2556			20.00	22,43	6.24	3.78	776	- 1		105	215				556	
	556	207	0.927	0.1860	0.2102	0.2192	0.04152	22.43	21.25	23.04	6.58	8.98	839	10		201	234	834			636	
	636	24(7	0.977	0.1031	0,1902	0.1922	0.03640	23.04		24.58	7,46	4.50	972	11		232	271	387	1161	2525	795	
	798	26/7	1,108	0.1306	0.1538	0.1538	0.02913	24.56	22.92			4.55	972	11		232	271	387	1161	2524	795	
	795	46/7	1.115	0.1313	0.1544	0.1544	0.02924	24.64	29.01	24,64	7.61							390		2543	795	
	795	20/19	1,140	0.1907	0.1540	0.1540	0.02917	24.92	23.32	24.92	7.68	4.65	979	11		234	273		1170			
	954	45/7	1.165	0.1099	0.1291	0.1291	0.02446	25.19	23,62	25.19	7.84	4.75	1076	12		257	300	429	1256	2795	954	
	954	547	1,196	0.1094	0.1287	0.1287	0.02438	25.53	24.00	25,53	8.05	4.84	1005	12		259	303	432	1297	2920	954	
	1192	54/19	1.558	0.0053	0.1013	0.1013	0.01919	27.03	25,67	27.00	9.01	5.46	1263	15		305	352	503	1209	3281	1192	
	1272	54/19	1.582	0.0851	0.0999	0.0996	0.01886	27,48	26,17	27.40	9,31	5.60	1285	15		307	350	512	1536	3333	1272	
	1590	54/19	1.545	0.0657	0.0707	0.0767	0,01463	29.09	27.98	29.09	10.40	6.50	1612	16		351	422	602	1807	3925	1590	
	2312	76/10	1.600	0.0505	0.0584	0.0584	0.01108	31.47	30.60	31.47	12,13	7.36	1011	21	6 381	433	505	721	2164	4704	2312	

Notes:
Sun computations based on moon local sun time, Solar absorption based on "Clear almosphere", Astrouth of line: N-8 = 0, E-W = 80

Scal Energy Delivery Bystem Planning & Engleswing

Computation of SAC Overhead Conductor Ampacities

(Steady State)

Per ANSI/IEEE Standard 738-1986

		50 72	Tempe	rature		
m/h	r fVs		C	F		
Wind speed 1.3	36 2.00	Ambient air temp	40	104	Lalllude	45 degrees N
Coefficient of emissivity	0.5	Conductor surface temp	200	392	Azimuth of line	90 degrees
Coefficient of solar absorption	0.5				Elev above msl	1000 lt
Air viscosity @ T ave	0.05463	lb/h (t				
Air density	0.05403	lb/It ³				
Air thermal conductivity	0.0101	W/II C			₩.	
Altitude of sun	68.1	degrees				
Azimuth of sun	180	degrees				
Heat rec'd by a surface	94.64	W/It²				
Elevation correction factor	1.0340		20			

					Resistance, Ohm/ml			Conducto	r heat trai	nsfer, W/f	1			MV	A rating	o nomi	nal volta	no.		
	Conduc	or	50	100	200	200	Forced	convection he	eat loss	Radiated	Solar	Ampacity KV:	69	115	138	161	230	345	500	kcm
kcm	strand	dam,in	deg C	deg C	deg C	_deg C_	qc1	_qc2_	max	heat loss	heat gain	nond/ph;	1	1	1	1	1	2	3	Kuii
4/0	6/1	0.563	0.5920	0.6979	0.9097	0.17229	46.46	39.77	46.46	15.72	2.30	590	70	117	141	164				4/0
268	6/7	0.633	0.5520	0.6507	0.8481	0.18063	49.28	42.67	49.28	17.67	2.58	633	78	128	151	177		58,70%		266
336	18/1	0.684	0.3059	0.3608	0.4700	0.08902	51.24	44.70	51.24	19.09	2.79	871	104	174	208	243				336
336	26/7	0.721	0.3072	0.3623	0.4725	0.08949	52.62	46.14	52.62	20.13	2.94	883	106	176	211	248				338
477	26/7	0.858	0.2169	0.2557	0.3333	0.06313	57.44	51.21	57.44	23.95	3.50	1111	133	221	266	310				477
477	24/7	0.848	0.2168	0.2556	0.3332	0.08311	57.04	50.78	57.04	23.62	3.45	1106	132	220	284	308				
556	26/7	0.927	0.1860	0.2192	0.2858	0.05409	59.73	53.65	59.73	25.88	3.78	1230	147	245	294	343				477
636	24/7	0.977	0.1631	0.1922	0.2504	0.04742	61.34	55.37	61.34	27.27	3.98	1336	160	266	319	373	532			556
795	26/7	1.108	0.1306	0.1538	0.2002	0.03792	65.38	59.71	65.38	30.93	4.52	1556	188	310	372	434	620	1860	4040	636
795	45/7	1.115	0.1313	0.1544	0.2006	0.03799	65.59	59.93	65.59	31.13	4.55	1558	186	310	372	434	620		4042	795
795	30/19	1.140	0.1307	0.1540	0.2008	0.03799	66.33	60.74	66.33	31.82	4.65	1569	187	312	375	437	625	1861	4047	795
191 954	45/7	1.165	0.1099	0.1291	0.1875	0.03172	67.06	61.53	67.06	32.52	4.75	1729	207	344	413	482	689	1875	4076	795
954	54/7	1.196	0.1094	0.1287	0.1673	0.03169	67.96	62.51	67.96	33.39	4.88	1745	209	348	417	487	695	2068	4492	954
1192	54/19	1.338	0.0863	0.1013	0.1313	0.02487	71.95	66.88	71.95	37,35	5.48	2044	244	407	488	570	814	2442	4533 5309	954 —
1272	54/19	1.382	0.0851	0.0998	0.1288	0.02438	73.14	68.17	73.14	38.58	5.63	2087	249	416	499	582	831	2494	5422	1192 1272
1590	54/19	1.545	0.0857	0.0767	0.0987	0:01869	77.41	72.89	77.41	43.13	6.30	1472	295	492	591	689	985	2954	6423	
2312	76/19	1.802	0.0505	0.0584	0.0742	0.01405	83.72	79.94	83.72	50.30	7.35	3002	359	598	718	837	1198	3588	7800	1590 2312

Notes:
Sun computations based on noon local sun time Solar absorption based on "Clear almosphere" Azimuth of line: N-S = 0, E-W = 90

Xcel Energy Delivery System Planning & Engineering

Ex 35, Application, Appendix 7

	ADJUSTABLE TABLE															
	TABLE 5.2-6. Calculated Magnetic Fields (milligauss) for proposed double circuit 345 kV Transmission Line Designs															
	(3.28 feet above ground)															ENTER MVA BELOW TO
STRUCTURE	RUCTURE SYSTEM CURRENT DISTANCE TO PROPOSED CENTERLINES															ADJUST CURRENT IN THE TABLE:
TYPE	CONDITION	(AMPS)	-300'	-200'	-100'	-75'	-50'	-25'	0'	25'	50'	75'	100'	200'	300'	437.00 MVA PEAK
1 CIRCUIT	PEAK	1568.95	4.69	9.92	33.40	51.70	85.34	139.36	189.52	176.86	106.50	60.56	37.20	9.81	4.28	161.00 kV
DELTA CFG	AVERAGE	301.58	0.90	1.91	6.41	9.94	16.42	26.78	36.42	33.99	20.48	11.64	7.16	1.89	0.82	1.73 3 Phase
1 CIRCUIT	PEAK	1568.95	5.11	11.71	42.31	65.97	107.98	163.14	151.84	95.33	58.60	38.09	26.27	8.80	4.22	1568.95 Amps PEAK CALC'D
VERT CFG	AVERAGE	301.58	0.99	2.25	8.13	12.69	20.75	31.36	29.18	18.32	11.26	7.33	5.04	1.68	0.80	
2 CIRCUIT W/	PEAK	1568.95	4.22	8.80	26.33	38.21	58.78	95.62	152.26	163.43	108.04	65.97	42.25	11.71	5.11	84.00 MVA AVERAGE
1 CKT ACTIVE	AVERAGE	301.58	0.82	1.70	5.06	7.35	11.30	18.38	29.26	31.42	20.77	12.67	8.11	2.25	0.99	161.00 kV
2 CIRCUIT W/	PEAK	1568.95	1.13	3.45	19.73	36.13	71.08	136.09	178.47	137.05	71.91	36.67	20.15	3.51	1.13	1.73 3 Phase

34.30

26.34

13.82

7.06

3.87

0.67

26.17

301.58 Amps AVERAGE CALC'D

2 CKTS ACTIVE AVERAGE

301.58

0.21

0.67

3.80

6.95

13.67